Rubber Processing & Antiozonant Wax

Evaluation of Marcus M300 in Model Black Sidewall Compounds

Key Benefits in using Marcus M300 *

- Reduced processing energy and time
- Increased resistance to ozone attack
- Increased green tack

м	A	R	с	U	s	o c	ī	L
8 t	C	н	E		A 1	C	Α	L

* Application covered by US patent 6,639,003

To improve the resistance of rubber to the effects of ozone and UV light, rubber compounders have traditionally used combinations of static and dynamic antidegradants.

Microcrystalline waxes have traditionally been used to protect against static ozone attack and work by providing a physical barrier on the surface of a rubber article, such as a tire. This physical barrier prevents attack on the rubber from ozone present in the atmosphere. The surface film of microcrystalline wax is sacrificial and is constantly being regenerated through a phenomenon called blooming. Blooming is the process where the microcrystalline wax, due to its incompatibility with rubber, continually migrates to the rubber surface. Microcrystalline wax use in tires has been limited due to the adverse effect high levels have on adhesion and green tack of the rubber compound.

Marcus M300 is a low molecular weight polyethylene (LMWPE) polymer with properties as shown in Table 1. Marcus M300 has been shown effective in rubber compounds (patents pending) to both reduce the degradation effects of ozone on the rubber article and provide for improved processing of the rubber compound without the negative effect of reducing green tack of the unvulcanized rubber compound.

Marcus M300 polyethylene wax was evaluated in a model tire formulation shown in Table 2. Marcus M300 was evaluated against a Control formulation utilizing a conventional (LMWPE) wax and microcrystalline wax. Formulation M300 #1 eliminated the conventional LMWPE wax while Formulation M300#2 eliminated the conventional LMPE wax and half the microcrystalline wax.

	Molecular weight (Mn)	Mettler Drop Point (ASTM D—3954)	Hardness Dmm (ASTM D-5)	Density g/cc (ASTM D-1505)	Viscosity-cps @140C (Brookfield)	Acid Number mg KOH/g
M300	1000	118	2.7	0.94	37	Nil

Table 1: Marcus 300 Low Molecular Weight Polyethylene Properties

RAW MATERIAL	RAW MATERIAL TYPE	M300 #1	M300 #2	CONTROL
POLYMER	Natural Rubber	50	50	50
POLYMER	HIGH-CIS BR	50	50	50
LOW MOLECULAR WT. PE	A-C 617	0	0	2
LOW MOLECULAR WT. PE	M300 PASTILLES	2	3.5	0
CARBON BLACK	N550	54	54	54
PROCESS OIL	NAPHTHENIC	7	7	7
ACTIVATOR	ZINC OXIDE	3	3	3
ACTIVATOR	STEARIC ACID	1.5	1.5	1.5
STATIC ANTIOZONANT WAX	MICROCRYSTALLINE	3.0	1.5	3.0
ANTIDEGRADANT	6PPD	2	2	2
PRIMARY ACCELERATOR	SANTOCURE NS	0.9	0.9	0.9
TOTAL SULFUR	CRYSTEX OT	2.0	2.0	2.0

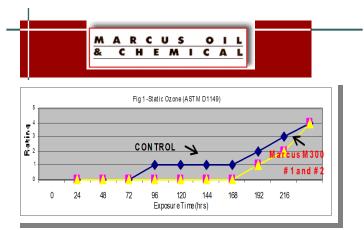


TABLE 3: VULCANIZATION CHARACTERISTICS (ODR Curemeter : 320F)

	CONTROL	M300 #1	M300 #2
Min. Torque: in-lbs.	14.0	15.1	15.8
Max. Torque: in-lbs.	68.0	68.8	68.6
Scortch;Ts2: minutes	3.2	3.2	3.2
T(90%); minutes	7.3	7.2	7.1

Table 4:BFGoodrich Portable Universal Tack-tester

	CONTROL	M300 #1	M300 #2			
Peak Force; lbs/sq. in.	18.3	26.7	25.5			
Tack Energy; in-lb./sq. in.	0.716	1.231	1.151			
n=5; 3 second dwell; 10 in./min. test speed						

Table 5: Average Adhesion ASTM D413 - Adhesion to Model Plyskim (60 NR/40SBR; 50 phr N660 black)

	CONTROL	M300 #1	M300 #2
Adhesion (KN/m; n=4).	29.6	24.1	33.1

Table 6: Physical Properties ASTMD412 & D2240

	CONTROL	M300 #1	M300 #2
Tensile Strength; PSI	2619	2691	2773
Hardness; Shore A	61	62	64
Ultimate Elongation;%	481.3	496.9	473.7
Modulus @ 100% Elon- gation;PSI	320.1	349.1	372.1
Modulus @ 200% Elon- gation;PSI	806.3	904.5	947.5
Modulus @ 300% Elon- gation;PSI	1456	1584	1617

Table 7: Gardner Glossmeter						
	CONTROL	M300 #1	M300 #2			
Gloss Reading (Gardner Units)	5.1	1.9	4.9			

Figure 1 shows the improved performance in static ozone tests with the use of Marcus M300 vs conventional LMWPE wax. Performance was maintained when substituting M300 for half of the microcrystalline wax.

The testing indicates that vulcanization characteristics (Table 3) were not significantly impacted with the use of Marcus M300.

Marcus M300 did indicate a statistically significant higher auto-adhesion (tack) (Table 4) in the unvulcanized state. While peal strength after, vulcanizing, was not statistically different.

Physical properties of the samples (Table 6) indicated that tensile and ultimate elongation characteristics were not significantly influenced by the use of Marcus M300. Modulus tended to increase with the substitution of M300 for conventional LMWPE and microcrystalline wax.

The use of Marcus M300 also showed a reduction in gloss (Table 6) for the formulation tested. This reduction was most apparent with formulation M300 #1.

Rubber Processability tests (Table 7) indicated a reduction in unvulcanized shear strain when M300 was substituted for conventional LMWPE. Strain sweep when vulcanized revealed little impact when using Marcus M300.

Table 7: Type Test	Rubber P Vulcani- zation State		o ility Anal Strain; %		Parame-	CON- TROL	M300 #1	M300 #2
Fre- quency Sweep	unvul- canized	100	2	0.33	G';kPa	188.5	153	224.1
Fre- quency Sweep	unvul- canized	100	15	0.83	Tan delta G';kPa	0.638 181.7	0.696 156.9	0.598 208.6
Fre- quency Sweep	unvul- canized	100	2	3.3	Tan delta G';kPa	0.596 371.6	0.648 325.2	0.567 426.2
Fre- quency Sweep	unvul- canized	100	15	8.3	Tan delta G';kPa	0.485 348.9	0.513 320.2	0.474 387.1
Strain Sweep	vulcan- ized	100	1	1	Tan delta G';kPa	1169	0.475 1114	0.433 1301
Strain Sweep	vulcan- ized	100	10	1	Tan delta G';kPa	0.117 863.3	0.108 832.5	0.122 940.4
Strain Sweep	vulcan- ized	100	50	1	Tan delta G';kPa Tan delta	0.13 515.2 0.292	0.127 522.3 0.284	0.134 568 0.287

Marcus Oil & Chemical Pvt. Ltd. Vill. Kasberia, H. P. L. Link Road, Haldia-721602, West Bengal, INDIA Ph:091 3224 276541 Fax:091 3224 276696

Disclaimer : Marcus Oil & Chemical does not guarantee the completeness, applicability or the accuracy of the information contained herein, nor the suitability of the products described herein for any particular purpose. No warranties of any kind, either expressed or implied, are made with respect to the products described herein. The user assumes all risk and liability in connection with such usage. Marcus Oil & Chemical shall not be liable for any damages, lost profits or injuries resulting from your use or inability to use information obtained from herein . Users should check all applicable laws and regulations concerning products use. The information contained herein is provided "As is" without warranty of any kind, either expressed or implied, including but not limited to the implied warranties or merchantability, fitness for a particular purpose and non-infringement.

Copyright Marcus Oil & Chemical - all rights reserved -2001